The Synthesis of a-Fluoroalkylphosphonates

G. Michael Blackburn" and Martin J. Parratt

Department of Chemistry, The University, Sheffield S3 7HF, U.K.

A general synthesis of α -fluoroalkylphosphonates is provided by the reaction of the dialkyl fluoromethylphosphonate carbanion with alkyl halides, a Idehydes, ketones, and acyl halides.

a-Fluoroalkylphosphonates are effective isopolar and isosteric for their formation. Routes involving **C-F** bond formation are founded on fluorination of phosphonate-stabilised car-Their development as models of biological phosphates^{3,4} has banions^{2,5,6} and the action of diethylaminosulphur trifluoride been restricted until recently by the lack of synthetic methods (DAST) on α -hydroxyalkylpho (DAST) on α-hydroxyalkylphosphonates.¹ Methods based on

Table 1. Substitution products from di-isopropyl fluoromethylphosphonate.

	Reagents	Product	Yield $\%$	Diastereoisomer ratio	^{31}P N.m.r. ^a δ /p.p.m.
or	$CH_2=CHCH_2Br + (1)$	$\mathbf{3}$	45		15.5
	$Me2SO4 + (1)$	4	60		16.6
	Me ₃ SiCl	(5)	40 ^b		19.3
	Me ₃ SiBr	(6	30 ^b		22.8
	$PhCOCI + (1)$		46	4:3	0.7, 1.0
	$MeCOCHCIME + (1)$	(8)	46	12:12:3:2	13.0, 11.8, 11.7, 13.4
	$DAST + (11)$	(12)	65	1 : .	11.6, 11.4
	$PhCHO + (5)$	(13)	100	1 : 1	4.7, 3.3

³¹P Chemical shifts downfield from external 85% H₃PO₄ reference. ^b Spectroscopic yields.

Scheme 1. Reagents: i, LDA-THF at -78 °C; ii, CH₂=CHCH₂Cl; iii, Me,SO₄; iv, PhCHO; v, DAST; vi, Me₃SiBr; vii, R¹R²CO;
viii, 50 °C; ix, PhCOCl; x, MeCOCHClMe.
Ф = (Me₂CHO)₂PO-

P-C(F) bond synthesis involve Arbusov or Michaelis-Becker reactions with bromofluoroalkanes, $2,7,8$ while C-C(F)P bond formation has been achieved with Wadsworth-Emmons condensations of fluoromethylenebisphosphonates⁹ and reactions of metallated derivatives of difluoromethylphosphonate diesters.¹⁰⁻¹² We here present our results on reactions between carbon electrophiles and di-isopropyl lithiofluoromethylphosphonate.

The phosphonate anion salt **(2)** is obtained from the easily prepared¹³ di-isopropyl fluoromethylphosphonate (1) using lithium di-isopropylamide (LDA) in tetrahydrofuran (THF)

at -78 °C. The co-reactant is added at -78 °C and the reaction mixture brought to ambient temperature before work-up to give the desired products (Scheme 1). The carbanion acts as a nucleophile towards a variety of alkylating and acylating agents (Table 1). Simple alkylating agents lead to products of chain-extension, **(3)** and **(4).t** Silylation of **(2)** gives a mixture of mono- and bis-trimethylsilyl derivatives, *(5)* and *(6)* respectively, the latter resulting from the facile trans-protonation encountered elsewhere in this field.2 Acylation of **(2)** affords P-keto-a-fluoroalkylphosphonates which exist exclusively as **a** Z/E mixture of enol forms (7) while reaction of (2) with α halogenoketones gives a Darzens-type reaction leading to the β , γ -epoxy- α -fluorophosphonate **(8)**.

With aldehydes and ketones, the addition product of the phosphonate **(1)** is usually isolated as a mixture of diastereoisomeric α-fluoro-β-hydroxyphosphonates (9) (Table 2). If, however, the reaction mixture is warmed, a Wadsworth-Emmons type elimination results in the formation of a I-fluoroalkene **(10).** Additions to chiral aldehydes and ketones show a useful degree of stereoselectivity at the β -carbon centre while at the a-carbon there appears to be no size discrimination between hydrogen and fluorine. Virtually complete stereoselectivity of addition to 1,2:5,6-di(O-isopropylidene)-x-D-ribohexofurano-3-ulose **(14)** results in production of only two diastereoisomers **(9d).** These can be assigned the *allo*-configuration resulting from addition to the less-hindered si-face of the ketone.¹⁴

Further elaborations of these primary products increases the variety of α -fluoroalkylphosphonates which can be constructed from **(1).** Thus, the **1-fluoroethylphosphonate (4)** can be added to benzaldehyde to give the secondary alkylphosphonate (11). Treatment of α -fluoro- β -hydroxyphosphonates with DAST¹ can lead either to α , β -difluoroalkylphosphonates (12) or to products of dehydration. Lastly, the α -fluoro- α trimethylsilylphosphonate *(5)* can be employed in **a** Petersontype¹⁵ condensation with aldehydes to generate α -fluorovinylphosphonate esters **(13).** These usefully have a higher *cis*trans ratio of diastereoisomers than those made *via* **Wads**worth-Emmons condensations using fluoromethylenebisphosphonate anions⁹ (Table 1).

t **All** new compounds have been adequately characterised **by** analytical and spectroscopic methods.

Table 2. Addition products of phosphonates with aldehydes and ketones.

^a31P Chemical shifts downfield from external **85%** H3P0, reference.

Work is in progress to achieve diastereosynthetic control of chirality at the α -carbon centre in these processes.

We thank the S.E.R.C. for provision of a Research Studentship (to M.J.P.).

Received, *18th April 1983; Corn. 480*

References

- 1 G. M. Blackburn and D. **E.** Kent, *J. Chem. Soc., Chem. Commun.,* **1981, 511.**
- **2** G. M. Blackburn, **D. E.** England, and **F.** Kolkmann, *J. Chem. SOC., Chem. Commun.,* **1981, 830.**
- **3** G. M. Blackburn, *Chenz. Ind. (London),* **1981, 135.**
- **4** G. M. Blackburn, D. **E.** Kent, and F. Kolkmann, *J. Chem. SOC., Chem. Commun.,* **1981, 1188.**
- *5* **W.** Grell and **H.** Machleidt, *Liebigs Ann. Chem.,* **1966, 693, 134.**
- *6* C. **E.** McKenna and P. Shen, *J. Org. Chem.,* **1981, 46, 4573.**
- **7 D. J.** Burton and R. M. Flynn, *J. Fluorine Chem.,* **1980, 15, 263.**
- **8 H.** Machleidt and R. Wessendorf, *Liebigs Ann. Chem.,* **1964, 674, 1.**
- **9** *G.* **M.** Blackburn and M. **J.** Parratt, *J. Chem. SOC., Chem. Commun.,* **1982, 1270.**
- **10 D. J.** Burton, **T.** Takei, and **S.** Shin-Ya, *J. Fluorine Chem.,* **1981, 18, 197.**
- **11 D. J.** Burton, T. Ishihara, and **M.** Maruta, *Chern. Lett.,* **1982, 755.**
- **12** M. Obayashi, **E.** Ito, K. Matsui, and K. Kondo, *Tetrahedron Lett.,* **1982, 2323.**
- **13 E. Gryszkiewicz-Trochimowski,** *Bull. SOC. Chim. Fr.,* **1967, 4289.**
- **14** H. Paulsen and W. Bartsch, *Chem. Ber.,* **1975, 108, 1229.**
- **15 F. A.** Carey and **A.** *S.* Court, *J. Org. Chem.,* **1972, 37, 939.**