The Synthesis of α -Fluoroalkylphosphonates

G. Michael Blackburn* and Martin J. Parratt

Department of Chemistry, The University, Sheffield S3 7HF, U.K.

A general synthesis of α -fluoroalkylphosphonates is provided by the reaction of the dialkyl fluoromethylphosphonate carbanion with alkyl halides, aldehydes, ketones, and acyl halides.

 α -Fluoroalkylphosphonates are effective isopolar and isosteric analogues of the corresponding phosphate monoesters.^{1,2} Their development as models of biological phosphates^{3,4} has been restricted until recently by the lack of synthetic methods for their formation. Routes involving C-F bond formation are founded on fluorination of phosphonate-stabilised carbanions^{2,5,6} and the action of diethylaminosulphur trifluoride (DAST) on α -hydroxyalkylphosphonates.¹ Methods based on

Table 1. Substitution products from di-isopropyl fluoromethylphosphonate.

	Reagents	Product	Yield %	Diastereoisomer ratio	31 P N.m.r. ^a $\delta/p.p.m.$
	CH ₂ =CHCH ₂ Br + (1)	(3)	45		15.5
	$Me_2SO_4 + (1)$	(4)	60		16.6
~ "	Me ₃ SiCl (1)	∫ (5)	40 ^b		19.3
or	$Me_3SiBr \int T(\mathbf{I})$	λ ⁺ (6)	30 ^b		22.8
	PhCOCl + (1)	(7)	46	4:3	0.7, 1.0
	MeCOCHCIMe + (1)	(8)	46	12:12:3:2	13.0, 11.8, 11.7, 13.4
	DAST + (11)	(12)	65	1:1	11.6, 11.4
	PhCHO + (5)	(13)	100	1:1	4.7, 3.3

^a ³¹P Chemical shifts downfield from external 85% H₃PO₄ reference. ^b Spectroscopic yields.

Scheme 1. Reagents: i, LDA-THF at -78 °C; ii, CH₂=CHCH₂Cl; iii, Me₂SO₄; iv, PhCHO; v, DAST; vi, Me₃SiBr; vii, R¹R²CO; viii, 50 °C; ix, PhCOCl; x, MeCOCHClMe. $\Phi = (Me_2CHO)_2PO-$

P–C(F) bond synthesis involve Arbusov or Michaelis–Becker reactions with bromofluoroalkanes,^{2,7,8} while C–C(F)P bond formation has been achieved with Wadsworth–Emmons condensations of fluoromethylenebisphosphonates⁹ and reactions of metallated derivatives of diffuoromethylphosphonate diesters.^{10–12} We here present our results on reactions between carbon electrophiles and di-isopropyl lithiofluoromethylphosphonate.

The phosphonate anion salt (2) is obtained from the easily prepared¹³ di-isopropyl fluoromethylphosphonate (1) using lithium di-isopropylamide (LDA) in tetrahydrofuran (THF)

at -78 °C. The co-reactant is added at -78 °C and the reaction mixture brought to ambient temperature before work-up to give the desired products (Scheme 1). The carbanion acts as a nucleophile towards a variety of alkylating and acylating agents (Table 1). Simple alkylating agents lead to products of chain-extension, (3) and (4).† Silylation of (2) gives a mixture of mono- and bis-trimethylsilyl derivatives, (5) and (6) respectively, the latter resulting from the facile *trans*-protonation encountered elsewhere in this field.² Acylation of (2) affords β -keto- α -fluoroalkylphosphonates which exist exclusively as a Z/E mixture of enol forms (7) while reaction of (2) with α -halogenoketones gives a Darzens-type reaction leading to the β , γ -epoxy- α -fluorophosphonate (8).

With aldehydes and ketones, the addition product of the phosphonate (1) is usually isolated as a mixture of diastereoisomeric α -fluoro- β -hydroxyphosphonates (9) (Table 2). If, however, the reaction mixture is warmed, a Wadsworth-Emmons type elimination results in the formation of a 1-fluoroalkene (10). Additions to chiral aldehydes and ketones show a useful degree of stereoselectivity at the β -carbon centre while at the α -carbon there appears to be no size discrimination between hydrogen and fluorine. Virtually complete stereoselectivity of addition to 1,2:5,6-di(O-isopropylidene)- α -D-ribohexofurano-3-ulose (14) results in production of only two diastereoisomers (9d). These can be assigned the *allo*-configuration resulting from addition to the less-hindered *si*-face of the ketone.¹⁴

Further elaborations of these primary products increases the variety of α -fluoroalkylphosphonates which can be constructed from (1). Thus, the 1-fluoroethylphosphonate (4) can be added to benzaldehyde to give the secondary alkylphosphonate (11). Treatment of α -fluoro- β -hydroxyphosphonates with DAST¹ can lead either to α , β -difluoroalkylphosphonates (12) or to products of dehydration. Lastly, the α -fluoro- α trimethylsilylphosphonate (5) can be employed in a Petersontype¹⁵ condensation with aldehydes to generate α -fluorovinylphosphonate esters (13). These usefully have a higher *cistrans* ratio of diastereoisomers than those made *via* Wadsworth-Emmons condensations using fluoromethylenebisphosphonate anions⁹ (Table 1).

[†] All new compounds have been adequately characterised by analytical and spectroscopic methods.

Aldehyde/ketone + phosphonate	Product	Yield %	Diastereoisomer ratio	³¹ Ρ N.m.r. ^a δ/p.p.m.
PhCHO + (1) PhCH=CHCHO + (1)	(9a) (9b)	46 30	1:1 1:1	14.9, 14.0 14.5, 14.0
$CH_{2}OCH_{2}OCH-CHO + (1)$ (14) + (1) PhCHO + (4)	(9c) (9d) (11)	34 15 44	5:5:2:2 1:1 5:4	15.0, 13.0, 14.9, 13.8 13.9, 12.8 18.9, 17.8

Table 2. Addition products of phosphonates with aldehydes and ketones

^a ³¹P Chemical shifts downfield from external 85% H₃PO₄ reference.

Work is in progress to achieve diastereosynthetic control of chirality at the α -carbon centre in these processes.

We thank the S.E.R.C. for provision of a Research Studentship (to M.J.P.).

Received, 18th April 1983; Com. 480

References

- 1 G. M. Blackburn and D. E. Kent, J. Chem. Soc., Chem. Commun., 1981, 511.
- 2 G. M. Blackburn, D. E. England, and F. Kolkmann, J. Chem. Soc., Chem. Commun., 1981, 830.
- 3 G. M. Blackburn, Chem. Ind. (London), 1981, 135.
- 4 G. M. Blackburn, D. E. Kent, and F. Kolkmann, J. Chem. Soc., Chem. Commun., 1981, 1188.
- 5 W. Grell and H. Machleidt, Liebigs Ann. Chem., 1966, 693, 134.

- 6 C. E. McKenna and P. Shen, J. Org. Chem., 1981, 46, 4573.
- 7 D. J. Burton and R. M. Flynn, J. Fluorine Chem., 1980, 15, 263.
- 8 H. Machleidt and R. Wessendorf, Liebigs Ann. Chem., 1964, 674, 1.
- 9 G. M. Blackburn and M. J. Parratt, J. Chem. Soc., Chem. Commun., 1982, 1270.
- 10 D. J. Burton, T. Takei, and S. Shin-Ya, J. Fluorine Chem., 1981, 18, 197.
- 11 D. J. Burton, T. Ishihara, and M. Maruta, Chem. Lett., 1982, 755.
- 12 M. Obayashi, E. Ito, K. Matsui, and K. Kondo, Tetrahedron Lett., 1982, 2323.
- 13 E. Gryszkiewicz-Trochimowski, Bull. Soc. Chim. Fr., 1967, 4289.
- 14 H. Paulsen and W. Bartsch, Chem. Ber., 1975, 108, 1229.
- 15 F. A. Carey and A. S. Court, J. Org. Chem., 1972, 37, 939.